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SUMMARY 

A numerical code has been implemented for the numerical solution of the steady, incompressible 
Navier-Stokes equations using primitive variables in a bifurcating channel. A boundary-fitted, numerically 
generated grid is placed onto the domain of the channel which is transformed into either a rectilinear C- or 
T-shaped region. The differenced equations are solved using Newton’s iteration which makes upwinding at 
high Reynolds number unnecessary. Practical implications of inverting the huge Jacobian matrix of 
Newton’s method are discussed. The results have relative error of 2-3 x lo-’ at  Reynolds number 100, with 
T-geometry being marginally but significantly more accurate than C-geometry. Results have been obtained 
for Reynolds numbers up to  1000 for three bifurcations one of which models the carotid arterial bifurcation 
in the human head. For this latter bifurcation the wall shear stress is calculated in connection with the onset 
of atherosclerosis. Finally, the results of flows having different daughter tube end pressures are presented. 

K E Y  WORDS Primitive variables Newton iteration Boundary-fitted co-ordinates 

1 .  INTRODUCTION AND GOVERNING EQUATIONS 

The numerical solution of the fluid flow in a bifurcating channel has attracted much attention in, 
for example, the simulation of blood flow in an arterial bifurcation (see Reference 1 for a review). 
Since the boundary is irregular much of this work employs either finite element of finite volume 
techniques. However, more recently, traditional finite difference techniques have come into 
prominence by using boundary fitted co-ordinates pioneered by Thompson.’, Here the irregu- 
lar domain is mapped onto a rectangle, the ensuing grid being generated numerically. The 
governing equations are similarly transformed and are solved on the rectangular domain 
permitting central differences to be used throughout. The distinct advantage of this method is that 
the ensuing algebraic system is second-order-accurate. This has been successfully employed for 
the steady flow in a symmetric bifurcation using the stream function/vorticity representation of 
the fluid  equation^.^ However, the general non-symmetric bifurcation considered in this paper 
(Figure 1) does not readily map onto a rectangle if it is required that we have small cells 
throughout the domain. The approach used here is to map the domain onto a rectilinear region 
which more naturally reflects the topology of the bifurcation. Two regions or geometries are 
considered, namely, a rectangle with a cut (used by Friedman and Ehrlich4 in modelling the aortic 
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Figure 1. General bifurcation showing the boundary conditions. The curves ABC, DEF and GHI, the parameters 
I,, I,, I , ,  d,, d,, el, e,, el, 02. p ,  and p ,  can be ‘user specified’ 

bifurcation) and a T-shaped region which, as far as we are aware, is new (Figure 2). As we shall see, 
the latter is preferable having a higher concentration of cells near the apex. 

The algebraic system of equations resulting from differencing the governing differential equa- 
tions, is traditionally solved using relaxation techniques such as the Gauss-Seidel or SOR 
methods which can be accelerated using a multigrid f o r m u l a t i ~ n . ~ ~ ~  For such methods to 
converge at moderately high Reynolds number Re, which is typical for blood flow 
(1501 R e 5  600),’ it is usually necessary to incorporate an artificial viscosity or upwinding. The 
artificial viscosity proposed by Dennis and Hudson7 is very attractive in that it is only applied 
locally and is second-order-accurate. However such an inclusion, whilst maintaining the nature of 
the flow, can increase the numerical error by a factor 10 or more.‘. The advent of more powerful 
computers has made the more direct method of Newton’s iteration feasible. The use of Newton’s 
method for solving fluid flow equations was first considered by Fornberg,” who obtained results 
for the flow past a circular cylinder up to Reynolds number 600. The advantage of using Newton’s 
method is not only that it converges quadratically, thus requiring only 3 or 4 iterations for 
convergence, but also, perhaps more importantly, does not need the use of artificial viscosity. The 
disadvantage of the method is that storage is required for the huge Jacobian matrix and that each 
iteration can use considerable CPU time. This is, however, outweighed by the extra accuracy 
available and the rapidity of the convergence. Usually, the solution obtained by Newton’s method 
is accomplished on a supercomputer. However, such is the power of the modern PC and the 
capacity of its associated hard disk, that it has been possible to perform these calculations on such 
a machine using the disk to store the Jacobian. 

Fluid calculations using Newton’s method have so far only considered using the stream 
function/vorticity formulation of the governing equations; however, in this paper we chose to use 
the orginal, ‘primitive’ variables of velocity and pressure. This has two advantages, firstly, it is 
more accurate and, secondly, it is readily adaptable to a three-dimensional model. The big 
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Figure 2. Rectilinear boundaries for (a) C-geometry and (b) T-geometry showing array dimensions used 

disadvantage of the method is the difficulty of finding a suitable boundary condition for the 
pressure. We will overcome this difficulty by using a staggered grid (a modification of Harlow and 
Welch") in which the pressure is not defined on the boundary. 

The computer program is coded to solve the flow for general boundaries, i.e. the boundaries 
ABC, DEF and GHI in Figure 1 can be specified by the user. This is effected by mapping the 
irregular domain onto the rectilinear domain in Figure 2 using a numerical grid generator 
(Section 2.1). The transformed fluid equations are differenced using central differences and the 
resulting system of algebraic equations is solved using Newton's method (Section 2.2). Technical 
details for efficient implementation (Section 2.3) and an analysis of accuracy (Section 2.4) are also 
given. Results and discussion are given in Section 3. 

2. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS 

The governing equations are the non-dimensionalized steady Navier-Stokes equations: 

au av 
-+-=0, 
ax ay 
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au au ap 1 
ax ay ax Re 

au av a p  1 
ax a y  a y  Re 

u -+ u -+ --- v 2 u  =o, 

u - + u -+--- v2 u =o, 

where u, u are the velocities in the x , y  directions, respectively, p is the pressure and 
V2 = a2/ax2 + a2/ay2 is the Laplacian. Equations (1) are to be solved in the domain A-I (Figure 1) 
which is specified by the curves ABC, DEF and GHI and the parameters lo, 11, l z ,  dl, d2 ,  el, e2, O1 
and 02. The boundary conditions are also shown in Figure 1 and are 

(i) the no-slip condition u = u = 0 on the retaining walls, 
(ii) a parabolic velocity profile on entry given by y = 6 ( x  - e l ) ( x  + ez)/(el + e2)’ which gives 

a central height of 1.5 and an average velocity of unity, 
(iii) the pressure is specified on exit, i.e. p=pl on tube 1 and p = p 2  on tube 2. 

2. I .  Grid generation 

Before solving the governing equations, a numerically generated grid is placed on the domain 
in Figure 1. As mentioned in the Introduction, mapping the domain onto a rectangle is unsuitable 
if we are to have small cells throughout the domain. Hence, we will map the domain onto two 
alternative geometries, namely the split rectangle (C-geometry) and a T-shaped region 
(T-geometry) as shown in Figure 2. If (x ,  y )  are the co-ordinates of the original domain and (t, q) 
of the transformed, then, following Nakamura,’ ’ an orthogonal grid can be generated by solving 
the equations 

D x  = (ak, - Bk,)x, +(& -yk,)x, ,  

DY = (ak ,  - Bk,)Y< + (Bk, - y k,) Y ,  > 

where D is the quasi-linear elliptic partial differential operator given by 

and 
(4) 2 a = x: + y ,  , j?= xcx,+ ycy,, 

Here k is an arbitrary function of (5, q)  which is related to the aspect ratio of an individual cell and 
is used to control the local concentration of cells. These equations will give an orthogonal grid 
provided the grid lines meet the boundary curve at right angles, i.e. if 

y = x: + y:. 

X < X , + Y g Y , = O  ( 5 )  
on the boundary. Equations (2) are solved numerically by replacing derivatives by standard 
second-order central differences in (2H4) at each interior nodal points. The boundary condition 
(5 )  is differenced on a typical boundary (Figure 3(a)) about the point (i, f) using 

zt =d(zi + 1.1 + zi + 1.0 -zi - 1.1 -zi- 1,0), 

Z q = z i , 1 - Z i , O ,  (6) 

d x i ,  0, Y i ,  0 )  = O ,  
where z is either x or y in equation (5) and g(x, y ) = O  is the equation of the boundary. For 
convenience, we have chosen 5 and q such that the grid spacings in the transformed domain are 
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A< = A? = 1. Equations (6) can be adapted in a straightforward manner at internal corners E' in 
Figure 2(a) and B' and H' in Figure 2(b). Thus, associated with each nodal point (either on the 
boundary or in the interior), we have two non-linear equations. The full set of equations is solved 
iteratively using Newton's method (see Section 2.3). 

We have generated 3 grids for T-geometry as shown in Figure 4(ap(c) and one for C-geometry 
(Figure 4(d)). Figure 4(a) and 4(d) are the same bifurcation having straight sides with curved 
corners and are used for comparison purposes. Figure 4(b) is similar except the corners are sharp 
and Figure 4(c) models the main carotid artery bifurcation." Details of the grids including the 
function k(<, q )  are given in the appendix. 

To solve equations (1) on a generated grid they are transformed to the (<, q) plane using the 
relationships 

where 

(8) 
1 1 
J J = - ( ~ < D x  - x~D,,), z =-(x,Dy - ~ , D x ) ,  

with D, a, fl and y as before and J=x,y,-x,y~. The resulting equations are long, with equations 
(lb) and (lc) comprising of over 100 terms each, and are therefore not given explicitly here. The 
size of these equations is considered later in connection with program accuracy. 
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Figure 4. Generated grids: (a) Grid A with curved corners in T-geometry; (b) Grid B with sharp corners in T-geometry, 
(c) Grid C, the Bharadvaj bifurcation in T-geometry and (d) Grid D with curved corners in C-geometry 
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Figure 4. (Continued) 

2.2. Difeerencing and Newton's method 

Owing to the difficulty of providing a pressure boundary condition which could easily be 
applied, Harlow and Welch" devised a grid in which the velocity nodal points are situated at the 
sides of the cell with pressure at the centre. The pressure being defined at the centre of the cell, 
avoids the need to supply a pressure boundary condition. However, when equations (1) are 
mapped onto the (t, q) plane they are not readily discretized on such a staggered grid, and we use 
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a grid in which variables u, v are at cell vertices but retaining p at cell centres (see Figure 3(b)) as 
proposed by Kuznet~ov.'~ 

The transformed equation of (la) is differenced about the point ( i + f , j + $ )  using 

where z is either u or u. Equations (lb) and (lc) are differenced about (i,j) using the standard 
second-order central differences except for the pressure derivatives which use formulae similar to 
(8) shifted to centre on (i,j). 

Specifying the velocity profile on entry of the main tube and pressure on exit of the daughter 
tubes are normally sufficient for a unique solution. However, the corresponding differenced 
equations have too few equations for the number of unknowns. In order to close the system we 
also specify the velocity on exit.14 This is determined from the flow in the interior, by setting 

z N ,  j Z z N  - 1. j (C-geometry), 

(T-geometry), Z N ,  j = z N  - 1 ,  j 

Z o , j ' Z l , j  

where z represents either u or u. The differenced equations and differenced boundary conditions 
now form closed set of non-linear algebraic equations. These can be represented as f(u) = 0 where 
u is the vector of unknowns and f is a vector containing the left-hand side of the equations. These 
equations are solved iteratively using Newton's method which is given by 

U ( ~ + ' ) = U ( ~ ) + A U ( ~ ) ,  s=O, 1,2,. . ., (1 1) 

where Ads) is the solution of 

A Ads' = - f ( u")), 
and A = df/au is the Jacobian matrix evaluated at u = dS). The matrix A is a huge banded matrix 
with shape and dimensions as shown in Figure 5 for the two geometries. Inversion of (12) is 
effected by Gaussian elimination, the implementation of which is discussed in the next subsection. 
To commence the iteration, do) must be specified. For high Reynolds number this initial iterate 
must be fairly accurate and accordingly results are obtained using continuation. For Re = 10 the 
initial iterate do) is chosen to satisfy the boundary conditions with intermediate points set using 

Figure 5. The shape and dimensions of the Jacobian used in Newton's iteration: (a) C-geometry and (b) T-geometry 
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linear interpolation. Then flows were obtained for Re = 20,50,100,200,500 and 1000 for which 
do) is set to be the results from the previous value of Re. Typically, 4 iterations ensure an accuracy 
of 

2.3. Implementation 

These calculations were performed on a Nimbus VX386 microcomputer using the FTN77/386 
Fortran compiler from the University of Salford. The matrix A is stored on hard disk and requires 
9-15 Mbytes. The bulk of the computer time was taken up in solving equation (12). To solve this 
efficiently, the following were adopted: 

(9 

(ii) 
(iii) 

After a row of A is calculated, that row is immediately reduced using forward elimination 
and then transferred to the hard disk. This minimizes the number of disk transfers 
required. 
Transfers to the hard disk are done in large batches. 
The elimination process consists of three nested DO loops, the inner loop being the most 
expensive. This inner loop is only performed when it makes non-zero changes (i.e. only for 
non-zero multipliers) and then only for those elements which require a non-trivial change. 

The adoption of these measures reduced the time taken by approximately a factor five. The 
computer code can be switched to run with or without partial pivoting. It was found that pivoting 
is unnecessary except when the pivotal element is zero thus saving CPU time. A typical iteration 
took between 1 and 2 h, and hence solutions were obtained overnight. 

There are certain other matters worthy of note particular for those seeking to solve such 
problems by this method. These are listed below. 

(i) For the results to be correct the vector f must be correct. The substitution of equations (7) 
and (8) into (1) results, as we have seen in equations (lb) and (lc), having the order of 100 
terms. The discretization of these equations gives algebraic equations having several 
hundred terms. To avoid errors the program must be as transparent as possible. In 
particular, the equations used should look similar to their mathematical counterparts. For 
instance, if suitably named variables hold xt, x,,, yt and y,, then program statements for U, p 
and y can be made to look like the formulas in (4). In the same way, program expressions 
for Dx and Dy in (3) and the equations to be solved (2) can be made similarly transparent. 
This greatly assists checking and therefore helps maintain program accuracy. 

(ii) To obtain second-order convergence, which is the main virtue of Newton's method, every 
element of A must be correct. If one element is incorrect the convergence almost invariably 
reverts to first order. It is therefore useful to monitor the order achieved by the program as 
the calculation proceeds, which can be done as follows. Let E,  be the absolute value of the 
largest element in Ads) which is a measure of the error in u@). If the convergence is of order 
a then 

E , + l = k E :  and E,-kE,"- ,  (13) 

for some constant k .  Eliminating k gives 

For results in this paper, typically 1.9 c cx < 2.1. Mistakes in A were usually revealed by an 
a value in the range 0-99 < a< 1-01. 
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(iii) Owing to the difficulty in obtaining A correctly, one might be tempted to find A dynam- 
ically, i.e. use 

, (15) 
ah fi(U,,, . . . , U j + E ,  . . . ,un)-fi(uo, . . . , u j ,  . . . ,un) -- - 
au E 

wherefi and uj  refer to the elements of u and f, and E is small parameter, for example, 
E =  This should be resisted since, not only is it costly in computer time, but it can 
affect the convergence. It was found that for large A and a grid which contains very small 
cells (e.g. near the apex of the bifurcation) the iteration failed to converge when A is 
calculated dynamically but converged readily when A is found algebraically. For similar 
reasons it is necessary to work to double precision if programming in Fortran. However, 
formula (15) can be used to check the correctness of A. 

2.4. Accuracy 

To estimate the accuracy we obtain a further set of results on a grid with half the number of 
cells in each direction. If, at a common location, the solution on the original grid is UF and on the 
coarser grid is UM, and if, further, U is the exact solution then for a second-order method we have 

U - U F = K h Z  and U-UM=K(2h)'  (16) 

for some constant K where h is a typical cell size. Eliminating U ,  the error on the fine grid (given 
by N K h z )  at that location is approximately 

Here U is u or u for the velocities and the average of the four nearest neighbours for the pressure. 
Table I lists the maximum and average errors for a Reynolds number of 100 for both C- and 
T-geometry on grid A. It will be observed that average errors are in the range 2-4 x The 
results on the T-geometry are slightly but significantly more accurate than those on the 
C-geometry (50% at maximum and 20% on average). This is because there are more cells near the 
apex (E in Figure 1) in T-geometry than in C-geometry. For this reason the results in the next 
section use T-geometry. 

Another useful indicator of program performance is to calculate the observed order of the 
method. To find this we need a further set of results from a grid having a quarter of the number of 
cells in each direction which we denote by Uc If the order is r then similar to (16) we have 

U - Up? K h', u - UM N K(2hy, u - Uc" K(4hr. (18) 

Table I. Maximum and average relative errors (in units of and the perceived order of the 
method 

C-geometr y T-geometr y 

Max Average Order Max Average Order 

Horizontal velocity u 10.9 2.5 2.0 7-2 20 1.9 
Vertical velocity u 14.0 2.9 1.7 1.4 1.7 2.1 
Pressure p 10.6 7.3 3.2 6.7 2 5  0 9  
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Figure 6. Streamlines for (a) Re= 100, (b) Re=200, (c) Re = 500 and (d) Re= 1O00, in bifurcation A. The distance between 
arrowheads is proportional to the velocity at the tail-end of the arrow. The arrow in the top left-hand corner corresponds 
to unit velocity. Arrowheads are not shown in the circulation regions for clarity since the velocities here are very small 
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Eliminating U and K give the empirical order as 

The average order is shown in Table I. For the two velocities we have good confirmation of the 
second-order nature of the results; however, the pressure is disappointing. It should however be 
appreciated that this is a very stiff test. 

3. RESULTS 

The results are depicted graphically from Figure 6 onwards. In each case T-geometry is used. 
Figure 6 shows the streamlines for the flow in the bifurcation A for Re = 100,200,500,1000. The 
distance between arrowheads is proportional to the velocity magnitude at the tailend of the 
arrow. As expected, the circulation regions develop and enlarge as Re increases, the approximate 
length and width of each region is shown in Table 11. Figure 7 shows the corresponding pressure 
contours for Re=100, 500 in units of 0.05. As expected the maximum pressure occurs at  the 
stagnation point near the apex and the pressure drop along the tubes is approximately inversely 
proportional to Re. Figure 8 shows the streamlines for the bifurcation B with sharp corners for 
Re= 100. Unfortunately, the Newton iteration failed to converge for Re> 125. This is almost 
certainly due to the presence of re-entrant angles at  B, H and E at which the vorticity is singular, 
with point E being the most severe. To obtain solutions for Re significantly greater than 100 it 
would be necessary to use a much finer grid with a high concentration of cells near the corners. 
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Figure 7. Pressure contours for (a) Re= 100 and (b) Re= 500 for bifurcation A. Contours are spaced in units of 0.05 
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Table 11. Approximate sizes of circulation regions 

Upper Lower 

Re Length Width Length Width 

200 0 3 1  0-08 0.25 0.0 1 
Bifurcation A 500 0.93 0 1 8  1.52 0.14 

lo00 1.86 0 2 4  2.80 0.18 
~~~~~~~~~~~~~~ 

100 - - 0 7 4  0.10 
Bifurcation C 200 0.16 0.03 1.84 0.3 1 

500 1.16 0 1 8  2.64 0.44 

- 1  0 1 2 

X-B 

Figure 8. Streamlines for Re= 100 in bifurcation B 

Figure 9 shows the streamlines of the flow in the Bharadvaj bifurcation C for Re= 100,200,500 
and Figure 10 shows the corresponding pressure contours for the case Re=200. As Re increases 
a large circulation region develops in the internal carotid artery with the consequence of slow flow 
and small wall shear stress. It is known that the onset of atherosclerosis is connected with arterial 
wall shear stress,'59 l6 but the connection is unclear at present with Fry predicting that high 
stresses will induce atherogenesis, whereas Car0 and his co-workers predicting low stresses. 
Figure 11 shows the wall stress 6, = d&/dn where u, is the tangential component of velocity near 
the wall and a/an is the normal derivative. From these we have high stresses near the apex and 
low stresses at the circulation regions and hence we expect bifurcations to be regions of likely 
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Figure 9. Streamlines for (a) Re= 100, (b) Re=200 and (c) Re=500 for the Bharadvaj bifurcation C 
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atherosclerosis development. The presence of spurious oscillations in Figure 1 l(c) for x > 3 along 
the curve GHI indicates that the outlet boundary condition in future models will need improving. 

In all the results so far the pressures p1 and pz at the ends of the daughter tubes have been the 
same. Figure 12 shows the flows at Re=100 for the bifurcation A with Ap=pz-pl = -5,5,15. 
For Ap = - 5 and 15 the pressure is sufficient to reverse the flow in one of the daughter tubes. In 
the case Ap = 5 the flow is slowed in the lower tube producing a wide circulation region. 

-1 0 1 2 3 4 

Figure 10. Pressure contous for Re=200  in Bharadvaj bifurcation C. Contours are spaced in units of 0.05 
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Figure 11.  Wall shear stress in the Bharadvaj bifurcation C: (-) along curve ABC ;(---)along curve IHG, (-.-.-) along 
curve E D  (. . . . . .) along curve EF for (a) Re = 100, (b) Re = 200 and (c) Re = 500 
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Figure 12. Streamlines for Re= 100 in bifurcation A with pressure difference p 2  -pt (a)- 5, (b) 5 and (c) 15. The dividing 
streamline is shown in each case 
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4. CONCLUSIONS 

To conclude we summarize what we consider are the original elements used in these calculations. 

(i) Mapping the physical domain onto a T-shaped region or grid using numerical grid 
generation. The ensuing grid is orthogonal having an even distribution of cells with a local 
concentration near the apex. Such a grid proved eminently suitable for the accurate 
calculation of the fluid flow through the bifurcation. The C-grid, also considered, produced 
results that were slightly but significantly less accurate. 

(ii) The use of Newton’s method with ‘primitive’ variables. This iteration makes the use of 
artificial viscosity unnecessary which substantially improves the accuracy of the results. 
We obtained results with relative accuracy of 2-3 x at moderately high Reynolds 
number for three non-symmetric bifurcations, one of which models the carotid arterial 
bifurcation. 

(iii) The solution of the flow in a general non-symmetric bifurcation using finite differences. 
(iv) The implementation of such a large calculation on a small computer. 

This paper is very much a forerunner to future work. Of particular interest is the solution of the 
flow in a three-dimensional bifurcation since it is known experimentally that secondary velocity 
components which are necessarily absent in a two-dimensional model are not negligible.’ Using 
‘primitive’ variables instead of the more usual stream function/vorticity formulation means that 
the techniques discussed here can readily be adapted to a three-dimensional model. Also the code 
could be adapted to include time dependence for the study of pulsatile flow and the inclusion of 
a non-Newtonian fluid would model blood more precisely. 
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APPENDIX 

The equations of the boundaries in Figure 1 are as follows: 

Curve ABC: sinh[c(y-e,)]sinh[c( -xsinO1 +ycosO, -d,)]=h,, 

Curve GHI: sinh[c(y+e2)]sinh[c(xsin02+ycos 02+d2)]=h2, (20) 

Curve DEF: sinh[c(-xsind1+ycosd1+d~]sinh[c(xsin6)z+yc~sO~-dZ)]=h3. 

At large distances from the bifurcation the curve become virtually straight lines as given by 
setting the expressions in parantheses equal to zero. The sinh functions ensure that the curves 
rapidly become straight, away from the branch point. For Grid A, 

For Grid B the parameters are the same except hl = h2 = h3 =O. The Bharadvaj bifurcation 
(Grid C) can be satisfactorily modelled using equations (20) by adding a suitable expression to 
represent the bulbous elements in the bifurcation. This is effected by replacing d j ,  j =  1,2 in (20) by 

with 

d j +  Vjsech[z(l +03z4)], 

z =(x cos d j -  ( - 1 ) j  y sin dj- pj)/wj, 

where 4, w j  and pi are the depth, width and centre of the bulbous portion, respectively. The 
variations parameters are given by 

Grids A, B and C all use T-geometry. Grid D is the same as Grid A except that it uses C-geometry. 
The function k ( c ,  q )  used to control the local density of grid cells is given by 

1 
k ,  =a(( - 4) k,  = 0 for C-geometry, 

1 

k,= -At; 
392 

5 
3136 

k,=-q for T-geometry. 

The lengths lo, ll and l2  are chosen to be sufficiently large so that the inlet and outlet conditions 
simulate uniform parabolic Poiseuille flow. It was found that setting l0=4 and Il  = I 2  = 12 is 
sufficient for all the cases considered. 
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